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ANOTE ON THE gl CONSTANT OF EQ F

BY
YEHORAM GORDON

ABSTRACT

Let X and Y be Banach spaces. TFAE (1) X and Y do not contain subspaces
uniformly isomorphic to [Z’s. (2) The local unconditional structure constant of
the space of bounded operators L(X}, Y, ) tends to infinity for every increasing
sequence {X,};_, and {Y,};_, of finite-dimensional subspaces of X and Y
respectively.

Given Banach spaces E and F, let E ® F denote the closure of the finite rank
tensors t =2, x; ®y; € EQF in the norm ||, = sup{|Z (x;, x *){y, y *)|; [|x*[| =
|ly*|| = 1}. Let (I,, 7r,) be the normed ideal of 1-absolutely summing operators,
and ('}, y,) the normed ideal of L-factorizable operators. It is well known that if
u € L(E,F) and v € L(F, E) have finite ranks, then trace(uv) = y,(u)m.(v*)
([7]). The gi constant of a Banach space X is defined as g(X) = sup{y:(T);
m(T)=1, T€ll(X, L)}, and it is also well known that gl(X)= x,(X) (= the
local unconditional structure constant of X) [6].

THEOREM. Let X and Y be Banach spaces. Then gli(Xi & Yi)—u—x® for
every increasing sequence {X}x-1 and {Y.}x-. of finite-dimensional subspaces of
X and Y respectively, if, and only if, X and Y do not contain subspaces uniformly
isomorphic to 1’s.

We shall in fact obtain a quantitative version of the theorem which is almost
exact. The “only if”’ part of the theorem is very simple, because suppose X has
subspaces X, uniformly isomorphic to /=’s. By Dvoretzky’s theorem, Y contains
subspaces Y, uniformly isomorphic to 13’s, and since 1X& !5 has a (natural)
monotone unconditional basis, therefore the sequence {gl(X. & Yi)}-: is
bounded.

For the “if”” part of the proof we need some definitions and other results. Let
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{g:(w)}i-: be centered independent normalized Gaussian variables on a proba-
bility space (£}, P) and X be a Banach space. Following [3] we define on
Ly(X, Q, P) the projection G, by Gu(f) = Z.1 & [af(w)gi(w)dP(w). Clearly the
range of G, can be naturally and isometrically identified with the linear space
L (13, X) equipped with the norm

(]

where {e:}/-, is an orthonormal basis for /5, The norm dual to [, I*, is defined for
operators S € L(X, I3) by I*(S) =sup{trace(ST); T€ L(I5, X), (T)=1}. It is
known that if T € L{I5, X), then I*(T*)= (T) = v, (X)I*(T*), where y,(X)=
|| G.|l; if in addition dim X = n, then y.(X) = c log(n + 1), where ¢ is an absolute
constant [9] (see [1] for related facts and references).

The Gaussian type p (cotype q) constant of a Banach space X on n vectors is
denoted by a®’(X) (B(X)), and defined to be the least C such that

(15 o) =c(gr)”

(Zsr) =], [Zexl))

for all X, Xz, - -, X» in X. We shall use the inequalities a (X *) = y.(X)B2(X)
and BA(X)=n"""BP(X). Moreover, if dimX = N, then aP(X)=2aR(X)
for all n =1 ({10)).

3 a1 dpw)) (e x),

PRrOOF OF THE “IF”’ PART OF THE THEOREM. We shall first prove the following
two inequalities which may be of independent interest:

() If E and F have finite-dimensions and A € L(l3, E), B € L(I3, F), then
I(AMI*(B*) =c gi(EQF)[|A1(B)+[IB|[I(A)].
(IN) If dimE = n, dim F = m, then
1= cgl(EQF)[n "aP(E*)(log(m + 1))+ m a3 (F*)(log(n + 1))]
(c always denotes an absolute constant).

(I) An easy consequence of proposition 9(1) [5] states that if T € L(X,13),
then m(T)=c Vn(Js | T*(x)|Fdm (x))"* = cl(T*), where dm denotes the nor-
malized rotation invariant measure on the unit sphere S, of I2. Let now
C e L(E, !I5) and D € L(F, I3) be arbitrary, and consider the maps
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CRD

EQF

HS(5)—22 > EQF,
where HS(I3) (=13") is the space of Hilbert Schmidt operators on I5. By
proposition 5.2 [4], m(C ® D)= m:i(C)m (D), hence
Y(C®D)=gl(E ® F)m(C®D)=gl(E @ F)m\(C)m(D)
= c’g(EQF)I(CHI(D*),

therefore, combining inequalities we obtain

trace(AC)trace(BD) = trace((A @ B}(CR D))= y(CR D)m((A ® B)*)

=c*g(EQF)(C*I(D*)cl(A ®B).

Now, by [2] HA®B)=c[|A|[I(B)+||B|I(A)], and this, together with the

definition of I* establishes (I).

(I) Using lemma 4.11 [1], there exist A € L(I3, E), B € L(l7, F), satisfying

lAl=IBl=1, I(A*)=2VnaPE*) and [(B*)=2Vma@(F*).

Therefore, ||A /I*(A*) = VI*(A*) = n'I(A*Y) = 2n"aP(E*) and
HA)1*(A*)=clog(n + 1) and similar estimates hold for the operator B as well.
Now obviously (I) implies (II).
By [8] X and Y have some cotype q <, i.e. sup, 8P(X) and supB(Y)=
c; <o, Hence, if dim X, = n,
@) (XT) = ¥ (X )BR (Xi) = ¢ (log(ni + D)en ™ " BID(Xi)

= c’cy(log(n + D)n)>

with a similar estimate holding for the space Y. of dimension m.. Applying these
inequalities in (II) we obtain

1= c’eigl(Xi & Yi)(log(ne + Dlog(mi + D))(n "+ m"9),
that is gl(Xi & Yi) =k 0. O
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